Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Evol Appl ; 15(7): 1079-1098, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35899258

RESUMO

The vertebrate sodium-iodide symporter (NIS or SLC5A5) transports iodide into the thyroid follicular cells that synthesize thyroid hormone. The SLC5A protein family includes transporters of vitamins, minerals, and nutrients. Disruption of SLC5A5 function by perchlorate, a pervasive environmental contaminant, leads to human pathologies, especially hypothyroidism. Perchlorate also disrupts the sexual development of model animals, including threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), but the mechanism of action is unknown. To test the hypothesis that SLC5A5 paralogs are expressed in tissues necessary for the development of reproductive organs, and therefore are plausible candidates to mediate the effects of perchlorate on sexual development, we first investigated the evolutionary history of Slc5a paralogs to better understand potential functional trajectories of the gene family. We identified two clades of slc5a paralogs with respect to an outgroup of sodium/choline cotransporters (slc5a7); these clades are the NIS clade of sodium/iodide and lactate cotransporters (slc5a5, slc5a6, slc5a8, slc5a8, and slc5a12) and the SGLT clade of sodium/glucose cotransporters (slc5a1, slc5a2, slc5a3, slc5a4, slc5a10, and slc5a11). We also characterized expression patterns of slc5a genes during development. Stickleback embryos and early larvae expressed NIS clade genes in connective tissue, cartilage, teeth, and thyroid. Stickleback males and females expressed slc5a5 and its paralogs in gonads. Single-cell transcriptomics (scRNA-seq) on zebrafish sex-genotyped gonads revealed that NIS clade-expressing cells included germ cells (slc5a5, slc5a6a, and slc5a6b) and gonadal soma cells (slc5a8l). These results are consistent with the hypothesis that perchlorate exerts its effects on sexual development by interacting with slc5a5 or its paralogs in reproductive tissues. These findings show novel expression domains of slc5 genes in stickleback and zebrafish, which suggest similar functions across vertebrates including humans, and provide candidates to mediate the effects of perchlorate on sexual development.

2.
Genet Med ; 23(10): 1889-1900, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113007

RESUMO

PURPOSE: Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants. METHODS: We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality. RESULTS: Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients' variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants. CONCLUSION: GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues.


Assuntos
Proteínas Morfogenéticas Ósseas , Anormalidades Craniofaciais/genética , Fatores de Diferenciação de Crescimento , Animais , Proteínas Morfogenéticas Ósseas/genética , Fatores de Diferenciação de Crescimento/genética , Humanos , Mutação de Sentido Incorreto , Fenótipo , Coluna Vertebral , Peixe-Zebra/genética
4.
Biol Open ; 10(3)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757938

RESUMO

People with underlying conditions, including hypertension, obesity, and diabetes, are especially susceptible to negative outcomes after infection with coronavirus SARS-CoV-2, which causes COVID-19. Hypertension and respiratory inflammation are exacerbated by the Renin-Angiotensin-Aldosterone System (RAAS), which normally protects from rapidly dropping blood pressure via Angiotensin II (Ang II) produced by the enzyme Ace. The Ace paralog Ace2 degrades Ang II, counteracting its chronic effects, and serves as the SARS-CoV-2 receptor. Ace, the coronavirus, and COVID-19 comorbidities all regulate Ace2, but we do not yet understand how. To exploit zebrafish (Danio rerio) to help understand the relationship of the RAAS to COVID-19, we must identify zebrafish orthologs and co-orthologs of human RAAS genes and understand their expression patterns. To achieve these goals, we conducted genomic and phylogenetic analyses and investigated single cell transcriptomes. Results showed that most human RAAS genes have one or more zebrafish orthologs or co-orthologs. Results identified a specific type of enterocyte as the specific site of expression of zebrafish orthologs of key RAAS components, including Ace, Ace2, Slc6a19 (SARS-CoV-2 co-receptor), and the Angiotensin-related peptide cleaving enzymes Anpep (receptor for the common cold coronavirus HCoV-229E), and Dpp4 (receptor for the Middle East Respiratory Syndrome virus, MERS-CoV). Results identified specific vascular cell subtypes expressing Ang II receptors, apelin, and apelin receptor genes. These results identify genes and cell types to exploit zebrafish as a disease model for understanding mechanisms of COVID-19.


Assuntos
Enterócitos , Regulação da Expressão Gênica , Sistema Renina-Angiotensina/genética , SARS-CoV-2 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , COVID-19/genética , COVID-19/metabolismo , Modelos Animais de Doenças , Enterócitos/metabolismo , Enterócitos/virologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/virologia , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
5.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724412

RESUMO

People with NR5A1 mutations experience testicular dysgenesis, ovotestes, or adrenal insufficiency, but we do not completely understand the origin of this phenotypic diversity. NR5A1 is expressed in gonadal soma precursor cells before expression of the sex-determining gene SRY. Many fish have two co-orthologs of NR5A1 that likely partitioned ancestral gene subfunctions between them. To explore ancestral roles of NR5A1, we knocked out nr5a1a and nr5a1b in zebrafish. Single-cell RNA-seq identified nr5a1a-expressing cells that co-expressed genes for steroid biosynthesis and the chemokine receptor Cxcl12a in 1-day postfertilization (dpf) embryos, as does the mammalian adrenal-gonadal (interrenal-gonadal) primordium. In 2dpf embryos, nr5a1a was expressed stronger in the interrenal-gonadal primordium than in the early hypothalamus but nr5a1b showed the reverse. Adult Leydig cells expressed both ohnologs and granulosa cells expressed nr5a1a stronger than nr5a1b. Mutants for nr5a1a lacked the interrenal, formed incompletely differentiated testes, had no Leydig cells, and grew far larger than normal fish. Mutants for nr5a1b formed a disorganized interrenal and their gonads completely disappeared. All homozygous mutant genotypes lacked secondary sex characteristics, including male breeding tubercles and female sex papillae, and had exceedingly low levels of estradiol, 11-ketotestosterone, and cortisol. RNA-seq showed that at 21dpf, some animals were developing as females and others were not, independent of nr5a1 genotype. By 35dpf, all mutant genotypes greatly under-expressed ovary-biased genes. Because adult nr5a1a mutants form gonads but lack an interrenal and conversely, adult nr5a1b mutants lack a gonad but have an interrenal, the adrenal, and gonadal functions of the ancestral nr5a1 gene partitioned between ohnologs after the teleost genome duplication, likely owing to reciprocal loss of ancestral tissue-specific regulatory elements. Identifying such elements could provide hints to otherwise unexplained cases of Differences in Sex Development.


Assuntos
Glândulas Suprarrenais/metabolismo , Proteínas de Ligação a DNA/genética , Disgenesia Gonadal/genética , Gônadas/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Glândulas Suprarrenais/embriologia , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Gônadas/embriologia , Masculino , Fenótipo , Processos de Determinação Sexual , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
6.
Front Oncol ; 10: 667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528872

RESUMO

Ten-eleven translocation 1 (TET1) is a member of methylcytosine dioxygenase, which catalyzes 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC) to promote the demethylation process. The dysregulated TET1 protein and 5 hmC level were reported to either suppress or promote carcinogenesis in a cancer type-dependent manner. Currently, the role of TET1 in the development of urinary bladder cancer (UBC) and its underlying molecular mechanisms remain unclear. Herein, we found that TET1 expression was downregulated in UBC specimens compared with normal urothelium and was inversely related to tumor stage and grade and overall survival, suggesting its negative association with UBC progression. TET1 silencing in UBC cells increased cell proliferation and invasiveness while the ectopic expression of wild-type TET1-CD, but not its enzymatic inactive mutant, reversed these effects and suppressed tumorigenicity in vivo. In addition, as a direct regulator of TET1 activity, vitamin C treatment increased 5 hmC level and inhibited the anchorage-independent growth and tumorigenicity of UBC cells. Furthermore, we found that TET1 maintained the hypomethylation in the promoter of the AJAP1 gene, which codes for adherens junction-associated protein 1. The downregulation of AJAP1 reversed TET1-CD-induced nuclear translocation of ß-catenin, thus inhibiting the expression of its downstream genes. In human UBC specimens, AJAP1 is frequently downregulated and positively associated with TET1. Notably, low expression levels of both TET1 and AJAP1 predict poor prognosis in UBC patients. In conclusion, we found that the frequently downregulated TET1 level reduces the hydroxymethylation of AJAP1 promoter and subsequently activates ß-catenin signaling to promote UBC development. The downregulation of both TET1 and AJAP1 might be a promising prognostic biomarker for UBC patients.

7.
Evol Lett ; 3(4): 374-391, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31388447

RESUMO

The role of osteoblast placement in skeletal morphological variation is relatively well understood, but alternative developmental mechanisms affecting bone shape remain largely unknown. Specifically, very little attention has been paid to variation in later mineralization stages of intramembranous ossification as a driver of morphological diversity. We discover the occurrence of specific, sometimes large, regions of nonmineralized osteoid within bones that also contain mineralized tissue. We show through a variety of histological, molecular, and tomographic tests that this "extended" osteoid material is most likely nonmineralized bone matrix. This tissue type is a significant determinant of gill cover bone shape in the teleostean suborder Cottoidei. We demonstrate repeated evolution of extended osteoid in Cottoidei through ancestral state reconstruction and test for an association between extended osteoid variation and habitat differences among species. Through measurement of extended osteoid at various stages of gill cover development in species across the phylogeny, we gain insight into possible evolutionary developmental origins of the trait. We conclude that this fine-tuned developmental regulation of bone matrix mineralization reflects heterochrony at multiple biological levels and is a novel mechanism for the evolution of diversity in skeletal morphology. This research lays the groundwork for a new model in which to study bone mineralization and evolutionary developmental processes, particularly as they may relate to adaptation during a prominent evolutionary radiation of fishes.

8.
Genetics ; 213(2): 529-553, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399485

RESUMO

Fetal mammalian testes secrete Anti-Müllerian hormone (Amh), which inhibits female reproductive tract (Müllerian duct) development. Amh also derives from mature mammalian ovarian follicles, which marks oocyte reserve and characterizes polycystic ovarian syndrome. Zebrafish (Danio rerio) lacks Müllerian ducts and the Amh receptor gene amhr2 but, curiously, retains amh To discover the roles of Amh in the absence of Müllerian ducts and the ancestral receptor gene, we made amh null alleles in zebrafish. Results showed that normal amh prevents female-biased sex ratios. Adult male amh mutants had enormous testes, half of which contained immature oocytes, demonstrating that Amh regulates male germ cell accumulation and inhibits oocyte development or survival. Mutant males formed sperm ducts and some produced a few offspring. Young female mutants laid a few fertile eggs, so they also had functional sex ducts. Older amh mutants accumulated nonvitellogenic follicles in exceedingly large but sterile ovaries, showing that Amh helps control ovarian follicle maturation and proliferation. RNA-sequencing data partitioned juveniles at 21 days postfertilization (dpf) into two groups that each contained mutant and wild-type fish. Group21-1 upregulated ovary genes compared to Group21-2, which were likely developing as males. By 35 dpf, transcriptomes distinguished males from females and, within each sex, mutants from wild types. In adult mutants, ovaries greatly underexpressed granulosa and theca genes, and testes underexpressed Leydig cell genes. These results show that ancestral Amh functions included development of the gonadal soma in ovaries and testes and regulation of gamete proliferation and maturation. A major gap in our understanding is the identity of the gene encoding a zebrafish Amh receptor; we show here that the loss of amhr2 is associated with the breakpoint of a chromosome rearrangement shared among cyprinid fishes.


Assuntos
Hormônio Antimülleriano/genética , Genitália Feminina/crescimento & desenvolvimento , Processos de Determinação Sexual , Peixe-Zebra/genética , Animais , Feminino , Gônadas/crescimento & desenvolvimento , Ductos Paramesonéfricos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , RNA-Seq , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Peixe-Zebra/crescimento & desenvolvimento
9.
Genetics ; 211(1): 219-233, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446521

RESUMO

In laboratory strains of zebrafish, sex determination occurs in the absence of a typical sex chromosome and it is not known what regulates the proportion of animals that develop as males or females. Many sex determination and gonad differentiation genes that act downstream of a sex chromosome are well conserved among vertebrates, but studies that test their contribution to this process have mostly been limited to mammalian models. In mammals, WNT4 is a signaling ligand that is essential for ovary and Müllerian duct development, where it antagonizes the male-promoting FGF9 signal. Wnt4 is well conserved across all vertebrates, but it is not known if Wnt4 plays a role in sex determination and/or the differentiation of sex organs in nonmammalian vertebrates. This question is especially interesting in teleosts, such as zebrafish, because they lack an Fgf9 ortholog. Here we show that wnt4a is the ortholog of mammalian Wnt4, and that wnt4b was present in the last common ancestor of humans and zebrafish, but was lost in mammals. We show that wnt4a loss-of-function mutants develop predominantly as males and conclude that wnt4a activity promotes female sex determination and/or differentiation in zebrafish. Additionally, both male and female wnt4a mutants are sterile due to defects in reproductive duct development. Together these results strongly argue that Wnt4a is a conserved regulator of female sex determination and reproductive duct development in mammalian and nonmammalian vertebrates.


Assuntos
Ductos Paramesonéfricos/metabolismo , Diferenciação Sexual , Proteína Wnt4/genética , Proteínas de Peixe-Zebra/genética , Animais , Feminino , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo , Masculino , Ductos Paramesonéfricos/embriologia , Proteína Wnt4/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
10.
Dev Dyn ; 246(11): 925-945, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28856758

RESUMO

BACKGROUND: Aberrant signaling between germ cells and somatic cells can lead to reproductive disease and depends on diffusible signals, including transforming growth factor-beta (TGFB) -family proteins. The TGFB-family protein Gsdf (gonadal soma derived factor) controls sex determination in some fish and is a candidate for mediating germ cell/soma signaling. RESULTS: Zebrafish expressed gsdf in somatic cells of bipotential gonads and expression continued in ovarian granulosa cells and testicular Sertoli cells. Homozygous gsdf knockout mutants delayed leaving the bipotential gonad state, but then became a male or a female. Mutant females ovulated a few oocytes, then became sterile, accumulating immature follicles. Female mutants stored excess lipid and down-regulated aromatase, gata4, insulin receptor, estrogen receptor, and genes for lipid metabolism, vitellogenin, and steroid biosynthesis. Mutant females contained less estrogen and more androgen than wild-types. Mutant males were fertile. Genomic analysis suggests that Gsdf, Bmp15, and Gdf9, originated as paralogs in vertebrate genome duplication events. CONCLUSIONS: In zebrafish, gsdf regulates ovarian follicle maturation and expression of genes for steroid biosynthesis, obesity, diabetes, and female fertility, leading to ovarian and extra-ovarian phenotypes that mimic human polycystic ovarian syndrome (PCOS), suggesting a role for a related TGFB signaling molecule in the etiology of PCOS. Developmental Dynamics 246:925-945, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Células-Tronco Adultas/fisiologia , Folículo Ovariano/crescimento & desenvolvimento , Fator de Crescimento Transformador beta/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/citologia , Humanos , Masculino , Síndrome do Ovário Policístico/etiologia , Fator de Crescimento Transformador beta/metabolismo
11.
Dev Dyn ; 245(11): 1066-1080, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27507212

RESUMO

BACKGROUND: Environmental temperature influences rates of embryonic development, but a detailed staging series for vertebrate embryos developing in the subzero cold of Antarctic waters is not yet available from fertilization to hatching. Given projected warming of the Southern Ocean, it is imperative to establish a baseline to evaluate potential effects of changing climate on fish developmental dynamics. RESULTS: We studied the Bullhead notothen (Notothenia coriiceps), a notothenioid fish inhabiting waters between -1.9 and +2 °C. In vitro fertilization produced embryos that progressed through cleavage, epiboly, gastrulation, segmentation, organogenesis, and hatching. We compared morphogenesis spatially and temporally to Zebrafish and medaka. Experimental animals hatched after about 6 months to early larval stages. To help understand skeletogenesis, we analyzed late embryos for expression of sox9 and runx2, which regulate chondrogenesis, osteogenesis, and eye development. Results revealed that, despite their prolonged developmental time course, N. coriiceps embryos developed similarly to those of other teleosts with large yolk cells. CONCLUSIONS: Our studies set the stage for future molecular analyses of development in these extremophile fish. Results provide a foundation for understanding the impact of ocean warming on embryonic development and larval recruitment of notothenioid fish, which are key factors in the marine trophic system. Developmental Dynamics 245:1066-1080, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Desenvolvimento Embrionário/fisiologia , Esqueleto/embriologia , Esqueleto/metabolismo , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Masculino , Oryzias/embriologia , Oryzias/metabolismo , Perciformes/embriologia , Perciformes/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
12.
Dev Biol ; 416(1): 136-148, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27265864

RESUMO

Both Fras1 and Itga8 connect mesenchymal cells to epithelia by way of an extracellular 'Fraser protein complex' that functions in signaling and adhesion; these proteins are vital to the development of several vertebrate organs. We previously found that zebrafish fras1 mutants have craniofacial defects, specifically, shortened symplectic cartilages and cartilage fusions that spare joint elements. During a forward mutagenesis screen, we identified a new zebrafish mutation, b1161, that we show here disrupts itga8, as confirmed using CRISPR-generated itga8 alleles. fras1 and itga8 single mutants and double mutants have similar craniofacial phenotypes, a result expected if loss of either gene disrupts function of the Fraser protein complex. Unlike fras1 mutants or other Fraser-related mutants, itga8 mutants do not show blistered tail fins. Thus, the function of the Fraser complex differs in the craniofacial skeleton and the tail fin. Focusing on the face, we find that itga8 mutants consistently show defective outpocketing of a late-forming portion of the first pharyngeal pouch, and variably express skeletal defects, matching previously characterized fras1 mutant phenotypes. In itga8 and fras1 mutants, skeletal severity varies markedly between sides, indicating that both mutants have increased developmental instability. Whereas fras1 is expressed in epithelia, we show that itga8 is expressed complementarily in facial mesenchyme. Paired with the observed phenotypic similarity, this expression indicates that the genes function in epithelial-mesenchymal interactions. Similar interactions between Fras1 and Itga8 have previously been found in mouse kidney, where these genes both regulate Nephronectin (Npnt) protein abundance. We find that zebrafish facial tissues express both npnt and the Fraser gene fibrillin2b (fbn2b), but their transcript levels do not depend on fras1 or itga8 function. Using a revertible fras1 allele, we find that the critical window for fras1 function in the craniofacial skeleton is between 1.5 and 3 days post fertilization, which coincides with the onset of fras1-dependent and itga8-dependent morphogenesis. We propose a model wherein Fras1 and Itga8 interact during late pharyngeal pouch morphogenesis to sculpt pharyngeal arches through epithelial-mesenchymal interactions, thereby stabilizing the developing craniofacial skeleton.


Assuntos
Região Branquial/embriologia , Epitélio/embriologia , Proteínas da Matriz Extracelular/fisiologia , Integrinas/fisiologia , Mesoderma/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Indução Embrionária , Epitélio/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Ossos Faciais/embriologia , Fibrilina-2/metabolismo , Integrinas/genética , Mesoderma/metabolismo , Morfogênese , Mutação , RNA Mensageiro , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
13.
J Neurosci ; 35(6): 2572-87, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25673850

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine ß hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Ritmo Circadiano , Dopamina/metabolismo , Neurônios Dopaminérgicos , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Aprendizagem da Esquiva/fisiologia , Comportamento Animal , Comportamento Impulsivo , Larva , Camundongos , Atividade Motora , Células NIH 3T3 , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
Genetics ; 198(3): 1291-308, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25233988

RESUMO

Sex determination can be robustly genetic, strongly environmental, or genetic subject to environmental perturbation. The genetic basis of sex determination is unknown for zebrafish (Danio rerio), a model for development and human health. We used RAD-tag population genomics to identify sex-linked polymorphisms. After verifying this "RAD-sex" method on medaka (Oryzias latipes), we studied two domesticated zebrafish strains (AB and TU), two natural laboratory strains (WIK and EKW), and two recent isolates from nature (NA and CB). All four natural strains had a single sex-linked region at the right tip of chromosome 4, enabling sex genotyping by PCR. Genotypes for the single nucleotide polymorphism (SNP) with the strongest statistical association to sex suggested that wild zebrafish have WZ/ZZ sex chromosomes. In natural strains, "male genotypes" became males and some "female genotypes" also became males, suggesting that the environment or genetic background can cause female-to-male sex reversal. Surprisingly, TU and AB lacked detectable sex-linked loci. Phylogenomics rooted on D. nigrofasciatus verified that all strains are monophyletic. Because AB and TU branched as a monophyletic clade, we could not rule out shared loss of the wild sex locus in a common ancestor despite their independent domestication. Mitochondrial DNA sequences showed that investigated strains represent only one of the three identified zebrafish haplogroups. Results suggest that zebrafish in nature possess a WZ/ZZ sex-determination mechanism with a major determinant lying near the right telomere of chromosome 4 that was modified during domestication. Strains providing the zebrafish reference genome lack key components of the natural sex-determination system but may have evolved variant sex-determining mechanisms during two decades in laboratory culture.


Assuntos
Processos de Determinação Sexual , Peixe-Zebra/genética , Animais , Mapeamento Cromossômico , Segregação de Cromossomos , Cruzamentos Genéticos , DNA/genética , Feminino , Loci Gênicos , Genoma , Genótipo , Masculino , Oryzias/genética , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Mapeamento por Restrição , Cromossomos Sexuais/genética
15.
Calcif Tissue Int ; 94(3): 353-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24414856

RESUMO

Osteoporosis results from an imbalance in bone remodeling, in which osteoclastic bone resorption exceeds osteoblastic bone formation. Iron has recently been recognized as an independent risk factor for osteoporosis. Reportedly, excess iron could promote osteoclast differentiation and bone resorption through the production of reactive oxygen species (ROS). We evaluated the effect of iron on osteoblast differentiation and bone formation in zebrafish and further investigated the potential benefits of deferoxamine (DFO), a powerful iron chelator, in iron-overloaded zebrafish. The zebrafish model of iron overload described in this study demonstrated an apparent inhibition of bone formation, accompanied by decreased expression of osteoblast-specific genes (runx2a, runx2b, osteocalcin, osteopontin, ALP, and collagen type I). The negative effect of iron on osteoblastic activity and bone formation could be attributed to increased ROS generation and oxidative stress. Most importantly, we revealed that DFO was capable of removing whole-body iron and attenuating oxidative stress in iron-overloaded larval zebrafish, which facilitated larval recovery from the reductions in bone formation and osteogenesis induced by iron overload.


Assuntos
Osso e Ossos/efeitos dos fármacos , Desferroxamina/farmacologia , Sobrecarga de Ferro/tratamento farmacológico , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Osteoblastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
16.
PLoS One ; 8(9): e73951, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040125

RESUMO

To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female pathway in zebrafish.


Assuntos
Gônadas/metabolismo , Meiose/genética , Diferenciação Sexual/genética , Tretinoína/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Biomarcadores , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Masculino , Camundongos , Filogenia , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Ácido Retinoico 4 Hidroxilase , Transdução de Sinais , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra
17.
Yao Xue Xue Bao ; 47(5): 677-9, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22812016

RESUMO

The study is to investigate the brain pharmacokinetics change of nasal tetramethylpyrazine phosphate (TMPP) pH-sensitive in situ gel in normal and model rats. Acute cerebral ischemia rat model was successfully established by middle cerebral artery occlusion (MCAO) method. Both normal and model rats were given nasal TMPP pH-sensitive in situ gel (10 mg x kg(-1)). Perfusates of brain striatum area were collected at each time point by microdialysis. The content of TMPP was determined by HPLC. The pharmacokinetics parameters were calculated by Kinetica 4.4 software at each time point of the brain drug concentration. The main pharmacokinetics parameters of TMPP were fitted with compartments 2. After nasal TMPP pH-sensitive in situ gel the values of C(max) and AUC of both components in brain showed as follows: the value of model group > that of normal group. Significant difference can be observed in the process of brain pharmacokinetics in normal and model rats after giving nasal TMPP pH-sensitive in situ gel.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Fosfatos/farmacocinética , Pirazinas/farmacocinética , Administração Intranasal , Animais , Área Sob a Curva , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão , Géis , Concentração de Íons de Hidrogênio , Infarto da Artéria Cerebral Média , Masculino , Microdiálise , Fosfatos/administração & dosagem , Pirazinas/administração & dosagem , Ratos , Ratos Sprague-Dawley
18.
J Endocrinol ; 214(3): 421-35, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22761277

RESUMO

In mammals, parathyroid hormone-related peptide (PTHrP, alias PTH-like hormone (Pthlh)) acts as a paracrine hormone that regulates the patterning of cartilage, bone, teeth, pancreas, and thymus. Beyond mammals, however, little is known about the molecular genetic mechanisms by which Pthlh regulates early development. To evaluate conserved pathways of craniofacial skeletogenesis, we isolated two Pthlh co-orthologs from the zebrafish (Danio rerio) and investigated their structural, phylogenetic, and syntenic relationships, expression, and function. Results showed that pthlh duplicates originated in the teleost genome duplication. Zebrafish pthlha and pthlhb were maternally expressed and showed overlapping and distinct zygotic expression patterns during skeletal development that mirrored mammalian expression domains. To explore the regulation of duplicated pthlh genes, we studied their expression patterns in mutants and found that both sox9a and sox9b are upstream of pthlha in arch and fin bud cartilages, but only sox9b is upstream of pthlha in the pancreas. Morpholino antisense knockdown showed that pthlha regulates both sox9a and sox9b in the pharyngeal arches but not in the brain or otic vesicles and that pthlhb does not regulate either sox9 gene, which is likely related to its highly degraded nuclear localization signal. Knockdown of pthlha but not pthlhb caused runx2b overexpression in craniofacial cartilages and premature bone mineralization. We conclude that in normal cartilage development, sox9 upregulates pthlh, which downregulates runx2, and that the duplicated nature of all three of these genes in zebrafish creates a network of regulation by different co-orthologs in different tissues.


Assuntos
Duplicação Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Osteogênese/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Elementos Antissenso (Genética) , Região Branquial/embriologia , Região Branquial/fisiologia , Cartilagem/embriologia , Cartilagem/fisiologia , DNA Complementar/genética , Ossos Faciais/embriologia , Ossos Faciais/fisiologia , Dados de Sequência Molecular , Osteogênese/fisiologia , Fenótipo , Filogenia , Fatores de Transcrição SOX9/genética , Crânio/embriologia , Crânio/fisiologia , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética
19.
Development ; 139(15): 2804-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22782724

RESUMO

Lesions in the epithelially expressed human gene FRAS1 cause Fraser syndrome, a complex disease with variable symptoms, including facial deformities and conductive hearing loss. The developmental basis of facial defects in Fraser syndrome has not been elucidated. Here we show that zebrafish fras1 mutants exhibit defects in facial epithelia and facial skeleton. Specifically, fras1 mutants fail to generate a late-forming portion of pharyngeal pouch 1 (termed late-p1) and skeletal elements adjacent to late-p1 are disrupted. Transplantation studies indicate that fras1 acts in endoderm to ensure normal morphology of both skeleton and endoderm, consistent with well-established epithelial expression of fras1. Late-p1 formation is concurrent with facial skeletal morphogenesis, and some skeletal defects in fras1 mutants arise during late-p1 morphogenesis, indicating a temporal connection between late-p1 and skeletal morphogenesis. Furthermore, fras1 mutants often show prominent second arch skeletal fusions through space occupied by late-p1 in wild type. Whereas every fras1 mutant shows defects in late-p1 formation, skeletal defects are less penetrant and often vary in severity, even between the left and right sides of the same individual. We interpret the fluctuating asymmetry in fras1 mutant skeleton and the changes in fras1 mutant skeletal defects through time as indicators that skeletal formation is destabilized. We propose a model wherein fras1 prompts late-p1 formation and thereby stabilizes skeletal formation during zebrafish facial development. Similar mechanisms of stochastic developmental instability might also account for the high phenotypic variation observed in human FRAS1 patients.


Assuntos
Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra/fisiologia , Animais , Osso e Ossos/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Cruzamentos Genéticos , Endoderma/metabolismo , Síndrome de Fraser/genética , Humanos , Hibridização In Situ , Modelos Biológicos , Modelos Genéticos , Mutação , Esqueleto , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
BMC Evol Biol ; 12: 27, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22390748

RESUMO

BACKGROUND: Although the vertebrate skeleton arose in the sea 500 million years ago, our understanding of the molecular fingerprints of chondrocytes and osteoblasts may be biased because it is informed mainly by research on land animals. In fact, the molecular fingerprint of teleost osteoblasts differs in key ways from that of tetrapods, but we do not know the origin of these novel gene functions. They either arose as neofunctionalization events after the teleost genome duplication (TGD), or they represent preserved ancestral functions that pre-date the TGD. Here, we provide evolutionary perspective to the molecular fingerprints of skeletal cells and assess the role of genome duplication in generating novel gene functions. We compared the molecular fingerprints of skeletogenic cells in two ray-finned fish: zebrafish (Danio rerio)--a teleost--and the spotted gar (Lepisosteus oculatus)--a "living fossil" representative of a lineage that diverged from the teleost lineage prior to the TGD (i.e., the teleost sister group). We analyzed developing embryos for expression of the structural collagen genes col1a2, col2a1, col10a1, and col11a2 in well-formed cartilage and bone, and studied expression of skeletal regulators, including the transcription factor genes sox9 and runx2, during mesenchymal condensation. RESULTS: Results provided no evidence for the evolution of novel functions among gene duplicates in zebrafish compared to the gar outgroup, but our findings shed light on the evolution of the osteoblast. Zebrafish and gar chondrocytes both expressed col10a1 as they matured, but both species' osteoblasts also expressed col10a1, which tetrapod osteoblasts do not express. This novel finding, along with sox9 and col2a1 expression in developing osteoblasts of both zebrafish and gar, demonstrates that osteoblasts of both a teleost and a basally diverging ray-fin fish express components of the supposed chondrocyte molecular fingerprint. CONCLUSIONS: Our surprising finding that the "chondrogenic" transcription factor sox9 is expressed in developing osteoblasts of both zebrafish and gar can help explain the expression of chondrocyte genes in osteoblasts of ray-finned fish. More broadly, our data suggest that the molecular fingerprint of the osteoblast, which largely is constrained among land animals, was not fixed during early vertebrate evolution.


Assuntos
Peixes/genética , Osteoblastos/citologia , Peixe-Zebra/genética , Animais , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Condrócitos/citologia , Peixes/fisiologia , Osteoblastos/fisiologia , Osteogênese , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...